If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=2Y^2+4Y-11
We move all terms to the left:
-(2Y^2+4Y-11)=0
We get rid of parentheses
-2Y^2-4Y+11=0
a = -2; b = -4; c = +11;
Δ = b2-4ac
Δ = -42-4·(-2)·11
Δ = 104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{104}=\sqrt{4*26}=\sqrt{4}*\sqrt{26}=2\sqrt{26}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{26}}{2*-2}=\frac{4-2\sqrt{26}}{-4} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{26}}{2*-2}=\frac{4+2\sqrt{26}}{-4} $
| -130=5(6r+4) | | X^2+4y^2=40 | | -(3u+24)=0 | | 14p=7 | | 3(2-1)+x=-39 | | 4(6+k)=3(4+k) | | 8x+37=87 | | x=3.5+-1.5(10) | | 2x-5=111 | | -91=7(3r–1) | | x+(x+75)=425 | | 4.2b-53.4=1.2b-2.4 | | x+2x=381 | | 5x-10+2x=48 | | (7a2-3a)-(5a2-5a)=0 | | (5x+4)+(4x+9)+(9x-6)+(4x+1)+(7x+4)=360 | | |2u-11|=3 | | x+2x=387 | | (10x+4)*10=1440 | | v/7=17.92 | | 5–3z+2z=-1 | | (8x+7)+(5x+18)+(10x+13)+(14x-11)=360 | | x+(x-59)=441 | | x-(x+59)=441 | | 3=u/5-4 | | 110+116+(8x-1)+(5x+36)+(7x+19)+(6x-2)=720 | | x+(x+59)=441 | | 110+116+(8x-1)+(5x+36)+(7x+19)+(6x-3)=720 | | -3=1-4x | | X2+y=60 | | 4f-2=2 | | x+3x=444 |